Abstract

We report results of a numerical study of noninteracting electrons moving in a random potential in two dimensions in the presence of a weak perpendicular magnetic field. We study the topological properties of the electronic eigenstates within a tight binding model. We find that in the weak magnetic field or strong randomness limit extended states float up in energy. Further, the localization length is found to diverge at the insulator phase boundary with the same exponent $\ensuremath{\nu}$ as that of the isolated lowest Landau band (high magnetic field limit).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.