Abstract

Efficient separation and enrichment of pathogenic bacteria from complex matrices are crucial for the detection and downstream biomedical investigations. Herein, we report a floating magnetic membrane comprised of superparamagnetic nanoparticles and cationic polymer chains for rapid capture and enrichment of pathogenic bacteria under continuous flow. Magnetic nanoparticles combined with polymeric chains have shown affordable features to capture, release, and concentrate the pathogens by applying an external magnetic field. We have verified the modulated porous characteristics of the floating magnetic membrane depending on the molecular weight of cationic polymer chains and demonstrated rapid enrichment of pathogenic bacteria from aqueous fluid in the capillary glass tube (> 50-fold). Structural flexibility of the magnetic membrane allows the liquid and smaller species to pass through but efficiently induces binding of the bacteria on the antibody-functionalized magnetic nanoparticles of the floating virtual web. The magnetic membrane enables size-selective filtration and target-specific trapping through ionic exchange and immunomagnetic isolation. This study implies that spatiotemporal application of the magnetic membrane for rapid enrichment of biological targets in a large volume of continuous flow using microfluidic devices and biochips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.