Abstract
In this paper, floating fin structured vertically stacked nanosheet gate-all-around (GAA) metal oxide semiconductor field-effect transistor (FNS) is proposed for low power logic device applications. To verify the electrical performance of the proposed device, three-dimensional (3-D) technology computer-aided design (TCAD) device/circuit simulations are performed with calibrated device model parameters. As a result, it is found that gate propagation delay (tdelay) and dynamic power (Pdyn) are improved by 8% and 19%. respectively as compared to conventional vertically stacked lateral nanosheet (LNS). Through the rigorous analysis on the resistance and capacitance components of FNS and LNS, it is clearly revealed that the τdelay and Pdyn are improved at the same Pdyn (50 μW) and tdelay (187 GHz) by the reduced effective capacitance which results from the diminished gate-to-sorece/drain overlap area. Based on the TCAD simulation studies, it is expected that the FNS is suitable for next generation logic digital applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.