Abstract

Accessibility to clean water is one of the most important challenges currently being faced by humanity. More than 780 million people in the world do not have access to clean water. Though earth has plenty of water, 97% of it is saltwater in oceans which needs appropriate treatment technologies to convert this to potable water. The current technologies of water desalination such as reverse osmosis consume a significant amount of energy, leading to the water-energy conundrum. To overcome this limitation, recently, several technologies based on nanoparticle-enhanced steam generation have been explored demonstrating extremely high conversion efficiencies (>40%) in the laboratory scale. These methods effectively utilize the plasmonic resonances of nanoparticles to increase the absorption cross section for the sunlight. However, they typically need to be operated under high concentration (>10X) requiring continuous tracking which results in increased system cost and complexity. Here, a novel solar-powered desalination system is proposed using CPC-based concentrator (with concentration ratio 2) combined with a low-cost absorber. The system demonstrates huge potential with an efficiency of 39% achieved at 2X concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.