Abstract

We develop two individual‐based models using a large and detailed data set (information gathered over more than a century) on a population of a longlived and territorial predator, the Spanish imperial eagle. We investigated the relationship between survival and predator pressure, prey behaviour and patch availability (i.e. settlement areas). Survival of dispersing individuals was highly dependent on the number of available settlement areas, mediated by prey availability. Changes in prey behaviour due to predation pressure (e.g. shifting from diurnal to nocturnal activity) can decrease their availability for predators even if the density significantly exceeds the predator needs. Environmental stochasticity had a strong influence on population viability when it occurred in a synchroneous way between breeding and settlement areas, and an increase in floater mortality negatively influenced stability and dynamics of the breeding segment of populations in reproductive areas. Our simulations demonstrated the link between the dynamics in settlement and breeding areas: factors affecting floater survival also influence whole population dynamics. Moreover, model outputs provided insights into the relationship between environmental stochasticity and population dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call