Abstract

Photovoltaic solar energy is an abundant, renewable, and clean source of energy that can contribute to the energy transition. However, traditional land-based solar installation have limitations in terms of space, efficiency, and environmental impact. Floating solar panels have emerged as a promising technology that can overcome these limitations and provide a range of benefits. This work describes the design and experimental testing of a small-scale of floating photovoltaic module prototype, with a focus on the effect of solar irradiation on its maximum power output. The prototype is composed of a 4Wp photovoltaic module and a buoyant supporting structure. Using Matlab®, simulations were performed on the floating photovoltaic module under varying environmental conditions, including solar irradiance, temperature, and wind speed. The prototype demonstrated an electrical performance of 3.62W under solar irradiation of 895W/m2 and a temperature of 41°C, with a power ratio exceeding 97% of this maximum power under standard conditions. The prototype also showed a positive energy gain when compared to the same photovoltaic module in a horizontal or inclined position, particularly at high temperature and solar irradiance. Moreover, shows a stability and resistance in harsh weather conditions. The mathematical fitting with a Gaussian distribution shows the rapid increase of the maximum power of the floating photovoltaic module in the range of 37°C to 42°C of temperature with increasing solar irradiance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.