Abstract

Abstract A new autonomous turbulence profiling float has been designed, built, and tested in field trials off Oregon. Flippin’ χSOLO (FχS) employs a SOLO-II buoyancy engine that not only changes but also shifts ballast to move the center of mass to positions on either side of the center of buoyancy, thus causing FχS to flip. FχS is outfitted with a full suite of turbulence sensors—two shear probes, two fast thermistors, and pitot tube, as well as a pressure sensor and three-axis linear accelerometers. FχS descends and ascends with turbulence sensors leading, thereby permitting measurement through the sea surface. The turbulence sensors are housed antipodal from communication antennas so as to eliminate flow disturbance. By flipping at the sea surface, antennas are exposed for communications. The mission of FχS is to provide intensive profiling measurements of the upper ocean from 240 m and through the sea surface, particularly during periods of extreme surface forcing. While surfaced, accelerometers provide estimates of wave height spectra and significant wave height. From 3.5 day field trials, here we evaluate (i) the statistics from two FχS units and our established shipboard profiler, Chameleon, and (ii) FχS-based wave statistics by comparison to a nearby NOAA wave buoy. Significance Statement The oceanographic fleet of Argo autonomous profilers yields important data that define the state of the ocean’s interior. Continued deployments over time define the evolution of the ocean’s interior. A significant next step will be to include turbulence measurements on these profilers, leading to estimates of thermodynamic mixing rates that predict future states of the ocean’s interior. An autonomous turbulence profiler that employs the buoyancy engine, mission logic, and remote communication of one particular Argo float is described herein. The Flippin’ χSOLO is an upper-ocean profiler tasked with rapid and continuous profiling of the upper ocean during weather conditions that preclude shipboard profiling and that includes the upper 10 m that is missed by shipboard turbulence profilers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call