Abstract

An Ising-type Vicsek model is proposed for collective motion and sudden direction change in a population of self-propelled particles. Particles move on a linear lattice with velocity +1 or -1 in the one-dimensional model. The probability of the velocity of a particle at the next step is determined by the number difference of the right- and left-moving particles at the present lattice site and its nearest-neighboring sites. A solitary wave appears also in our model similarly to previous models. In some parameter range, the moving direction of the solitary wave sometimes changes rather suddenly, which is like the sudden change of direction of a flock of birds. We study the average reversal time of traveling direction numerically and compare the results with a mean-field theory. The one-dimensional model is generalized to a two-dimensional model. Flip motion of a bandlike soliton is observed in the two-dimensional model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.