Abstract

Allowing microwaves to transmit through without changing the wavefront is one of the essential requirements of the dome structures of antenna arrays like radars. Here, we demonstrate a microwave metasurface as an array of two types of meta-atoms, which are the flip counterparts to each other. Due to the reciprocity and space-inversion symmetry, the wavefront in the transmission is unchanged by the metasurface in a broad spectrum; while at the same time, the wavefront in reflection can be manipulated independently by changing the arrangement of the meta-atoms. Specifically, a random-flip metasurface that produces diffuse reflection is realized, enabling a camouflaged meta-dome. The broadband, wide-angle, and polarization-independent diffuse reflection and undistorted transmission are numerically and experimentally verified. Our finding enables a unique meta-dome structure that has camouflage functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.