Abstract

Background PC-MRI is a noninvasive imaging technique used to measure the velocity of flowing blood in a particular blood vessel with flexible spatial and temporal resolution [1,2]. It is considered the clinical “gold standard” for quantification of blood flow. PC-MRI boasts a variety of established applications in quantifying cardiovascular function and hemodynamics. In particular, this technique offers clinicians with a means of measuring peak velocity, mean velocity, flow rate, and total flow throughout the vasculature of the human body. One of the challenges in PC-MRI is the wide range of variables that make up a given protocol requiring careful optimization of each imaging parameter in an effort to accomplish the goals of a given scan. Surprisingly, the current PC-MRI utilizes a default flip angle, which has not been optimized. A theoretical description of the signal acquired from flowing spins in spoiled gradient-echo pulse sequences has been previously developed [3]. These efforts indicate that there exists a flip angle that provides an optimized SNR for a given tissue, echo time, repetition time, slice thickness and velocity, which leads to increased reproducibility of quantitative PC-MRI measurements. This optimization cannot be performed empirically because of the number of parameters involved, hence mathematical and computation work is required. Methods All measurements were performed on a 1.5 Tesla system (Avanto; Siemens Medical Solutions, Erlangen, Germany) using a 16-channel surface coil. Blood velocity data in the common femoral arteries were obtained in 5 healthy consenting volunteers (4 male, 1 female, age __ ± __ years). PC-MRI was performed without breathhold using retrospective ECG triggering. Imaging parameters included 340 x 212.5 mm field of view, 256 x 160 matrix, 1.3 mm isotropic resolution, 8 mm slice thickness, 5.4/3.2 msec TR/TE, 32.4 msec temporal resolution, a range of flip angles for optimization (5,10,15,20,30,40,60,75 and 90°), 888 Hz/pixel acquisition bandwidth, three views per segment and a velocity encoding strength of 75 cm/sec (53 second scan time). The imaging was repeated 5 times in each volunteer.

Highlights

  • PC-MRI is a noninvasive imaging technique used to measure the velocity of flowing blood in a particular blood vessel with flexible spatial and temporal resolution [1,2]

  • One of the challenges in PC-MRI is the wide range of variables that make up a given protocol requiring careful optimization of each imaging parameter in an effort to accomplish the goals of a given scan

  • A theoretical description of the signal acquired from flowing spins in spoiled gradient-echo pulse sequences has been previously developed [3]. These efforts indicate that there exists a flip angle that provides an optimized SNR for a given tissue, echo time, repetition time, slice thickness and velocity, which leads to increased reproducibility of quantitative PC-MRI measurements

Read more

Summary

Background

PC-MRI is a noninvasive imaging technique used to measure the velocity of flowing blood in a particular blood vessel with flexible spatial and temporal resolution [1,2]. A theoretical description of the signal acquired from flowing spins in spoiled gradient-echo pulse sequences has been previously developed [3] These efforts indicate that there exists a flip angle that provides an optimized SNR for a given tissue, echo time, repetition time, slice thickness and velocity, which leads to increased reproducibility of quantitative PC-MRI measurements. This optimization cannot be performed empirically because of the number of parameters involved, mathematical and computation work is required

Methods
Results
Pelc NJ
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.