Abstract

A fault-tolerant control scheme for the autopilot of the small fixed-wing UAV is designed and tested by the actual flight experiments. The small fixed-wing UAV called Xiang Fei is developed independently by Nanjing University of Aeronautics and Astronautics. The flight control system is designed based on an open-source autopilot (Pixhawk). Real-time kinematic (RTK) GPS is introduced due to its high accuracy. Some modifications on the longitudinal and lateral guidance laws are achieved to improve the flight control performance. Moreover, a data fusion based fault-tolerant control scheme is integrated in altitude control and speed control for altitude sensor failure and airspeed sensor failure, which are the common problems for small fixed-wing UAV. Finally, the real flight experiments are implemented to test the fault-tolerant control based autopilot of UAV. Real flight test results are given and analyzed in detail, which show that the fixed-wing UAV can track the desired altitude and speed commands during the whole flight process including takeoff, climbing, cruising, gliding, landing, and wave-off by the fault-tolerant control based autopilot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.