Abstract

The sources of disruption to airline schedules are many, including crew absences, mechanical failures, and bad weather. When these unexpected events occur, airlines recover by replanning their operations. In this paper, we present airline schedule recovery models and algorithms that simultaneously develop recovery plans for aircraft, crews, and passengers by determining which flight leg departures to postpone and which to cancel. The objective is to minimize jointly airline operating costs and estimated passenger delay and disruption costs. This objective works to balance these costs, potentially increasing customer retention and loyalty, and improving airline profitability. Using an Airline Operations Control simulator that we have developed, we simulate several days of operations, using passenger and flight information from a major US airline. We demonstrate that our decision models can be applied in a real-time decision-making environment, and that decisions from our models can potentially reduce passenger arrival delays noticeably, without increasing operating costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.