Abstract

The aerodynamic layout of the Canard Rotor/Wing (CRW) aircraft in helicopter flight mode differs significantly from that of conventional helicopters. In order to study the flight dynamics characteristics of CRW aircraft in helicopter mode, first, the aerodynamic model of the main rotor system is established based on the blade element theory and wind tunnel test results. The aerodynamic forces and moments of the canard wing, horizontal tail, vertical tail and fuselage are obtained via theoretical analysis and empirical formula. The flight dynamics model of the CRW aircraft in helicopter mode is developed and validated by flight test data. Next, a method of model trimming using an optimization algorithm is proposed. The flight dynamics characteristics of the CRW are investigated by the method of linearized small perturbations via Simulink. The trim results are consistent with the conventional helicopter characteristics, and the results show that with increasing forward flight speed, the canard wing and horizontal tail can provide considerable lift, which reflects the unique characteristics of the CRW aircraft. Finally, mode analysis is implemented for the linearized CRW in helicopter mode. The results demonstrate that the stability of majority modes increases with increasing flight speed. However, one mode that diverges monotonously, and the reason is that the CRW helicopter mode has a large vertical tail compared to the conventional helicopter. The results of the dynamic analysis provide optimization guidance and reference for the overall design of the CRW aircraft in helicopter mode, and the model developed can be used for control system design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call