Abstract

This paper provides a thorough review of the significant work done so far in the area of flight dynamics and control of flapping-wing micro-air-vehicles (MAVs). It provides the background necessary to do research in that area. Furthermore, it raises questions that need to be addressed in the future. The three main blocks constituting the flight dynamic framework of flapping MAVs are reviewed. These blocks are the flapping kinematics, the aerodynamic modeling, and the body dynamics. The design and parametrization of the flapping kinematics necessary to produce high-control authority over the MAV, as well as design of kinematics suitable for different flight conditions, are reviewed. Aerodynamic models used for analysis of flapping flight are discussed. Particular attention is given to the physical aspects captured by these models. The issues and consequences of averaging the dynamics and neglecting the wing inertia are discussed. The dynamic stability analysis of flapping MAVs is usually performed by either averaging, linearization and subsequent analysis or using Floquet theory. Both approaches are discussed. The linear and nonlinear control design techniques for flapping MAVs are also reviewed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call