Abstract

This paper aims to explore the development of a flight dynamics model for a small-scale side-by-side helicopter and describe its trim and stability characteristics. The helicopter is considered a suitable candidate for Urban Air Mobility (UAM) solutions, because of its reliable design and low noise characteristics, but still very small knowledge is present on the mathematical modeling approaches and dynamic properties. A 14 degrees of freedom nonlinear mathematical model is developed and semi-analytical models are employed to account for the presence of the shrouds. An iterative trim routine is developed and applied with a suitable control mix that allows the use of classic helicopter controls. To control the vertical speed and roll rate, the paper assumes an equal collective pitch and lateral cyclic in the two rotors, while a uniform plus a differential longitudinal cyclic is adopted for pitch and yaw maneuvers. The paper discusses unique characteristics of the side-by-side configuration as obtained from the stability analysis: an unstable high-frequency mode, governed by the vertical velocity and pitch angle arises when the center of gravity (CG) of the vehicle is aligned or placed in front of the two main rotors. Similarly, both lateral phugoid and roll subsidence modes are sensitive to the CG location. The side-by-side configuration presents also a stable spiral mode which needs to be carefully designed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call