Abstract

Flight costs play an important role in determining the behavior, ecology, and physiology of birds and bats. Mechanical flight costs can be estimated from aerodynamics. However, measured metabolic flight costs (oxygen consumption rate) are less accurately predicted by flight theory, either because of (1) variation in flight efficiency across species, (2) variation in how basal costs interact with flight costs or (3) methodological biases. To tease apart these three hypotheses, we conducted a phylogenetically-controlled meta-analysis based on data from birds and bats. Birds doing short flights in a lab had higher metabolic rates than those with sustained flapping flight. In turn, species that used sustained flapping flight had a higher metabolic rate than those that flew primarily via gliding. Models accounting for relatedness (phylogeny) explained the data better than those that did not, which is congruent with the idea that several different flight Bauplans have evolved within birds and bats. Focusing on species with sustained flapping flight, for which more data are currently available, we found that flight cost estimates were not affected by measurement methods in both birds and bats. However, efficiency increased with body mass and decreased with flight speed in both birds and bats. Basal metabolic rate was additive to flight metabolic rate in bats but not birds. We use these results to derive an equation for estimating metabolic flight costs of birds and bats that includes variation in whole animal efficiency with flight speed and body mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call