Abstract

An angle-of-attack tracking control system is designed for the hypersonic reentry vehicle, whose aerodynamic parameters vary dramatically during reentry phase. The linear parameter-varying (LPV) theory based on linear fractional transformation (LFT) model (named as LPV–LFT method) is applied to design the controller for hypersonic reentry vehicle. Longitudinal moment trim of the hypersonic reentry vehicle is made along the desired flight trajectory, and a damping feedback loop is firstly designed to improve the system’s damping and static stability. Then, the linear dynamics model with damping feedback loop is established in LFT structure and treated as the controlled plant, and a parameter-varying reference model is utilized to guarantee the transient performance. The effectiveness of the proposed angle-of-attack tracking control system is validated through the frequency domain analysis and step response simulations. Finally, the actual angle-of-attack command tracking simulations using the nonlinear time-varying mathematical dynamics model are carried out to verify the accuracy and robustness of the hypersonic reentry vehicle control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.