Abstract

Conventionally, fatigue crack growth in aircraft structures under flight spectrum loading is often analysed and predicted based on crack growth rates obtained from constant-amplitude crack growth testing with cycle-by-cycle life prediction methods or models. Because the mechanism of fatigue crack growth under spectrum loading is yet to be fully understood, no matter how closely the models are able to account for the load interaction effects, the predictions generally have to be subjected to the validation by fatigue crack growth tests using either representative specimens or real structures under the representative flight spectrum. In view of this fact, it is not difficult to deduce that the predictions should be much more reliable if the predictions are made directly based on the flight spectrum crack growth data. Therefore, a new approach to fatigue crack growth life assessment has been proposed in this paper based on the analysis of flight-by-flight fatigue crack growth data measured by quantitative fractography for several common aircraft structural materials under various fighter aircraft flight spectra. Quantitative fractography was successfully used for titanium coupons to generate crack growth curves under flight spectrum loading. The crack growths were also shown to be exponential. As a demonstration, the flight-by-flight approach was used to determine fatigue crack growth lives of aircraft aft fuselage frames under a fighter aircraft usage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call