Abstract

The amount of multimedia content available online constantly increases, and this leads to problems for users who search for content or similar communities. Users in Flickr often self-organize in user communities through Flickr Groups. These groups are particularly interesting as they are a natural instantiation of the content~+~relations social media paradigm. We propose a novel approach to group searching through hypergroup discovery. Starting from roughly 11,000 Flickr groups' content and membership information, we create three different bag-of-word representations for groups, on which we learn probabilistic topic models. Finally, we cast the hypergroup discovery as a clustering problem that is solved via probabilistic affinity propagation. We show that hypergroups so found are generally consistent and can be described through topic-based and similarity-based measures. Our proposed solution could be relatively easily implemented as an application to enrich Flickr's traditional group search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.