Abstract

论用Flickr数据来分析游客空间行为和动线模式—聚类分析对比分析摘要 研究目的本论文旨在分析图片分享平台Flickr对截取游客空间动线信息和景点(POI)游览行为的适用性, 并且对比最知名的几种聚类分析手段, 以确定不同情况下的POI。研究设计/方法/途径本论文首先从Flickr上摘录下图片大数据, 比如上传时间、地点、用户等。其次, 本论文使用DBSCAN和k-means聚类分析参数来将上传图片分配给POI隐性变量。最后, 本论文采用关联规则挖掘分析(FP-growth参数)和序列样式勘探分析(GSP参数)以确认游客行为模式。研究结果本论文以慕尼黑城市为样本, 截取2015年13,545张图片。POIs由DBSCAN和k-means聚类分析将其分配到有名的POIs。由此, 本论文证明了两种技术对不同用法的各自优势。关联规则挖掘分析显示了显著联系(support:1%−4.6%;lift:1.4%−32.1%), 序列样式勘探分析确立了相关频率游览次序(support:0.6%−1.7%。研究理论限制/意义本论文的理论贡献在于, 根据图片数据, 通过对比分析不同聚类分析技术对确立POIs, 并且证明关联规则挖掘分析和序列样式勘探分析各有千秋又互相补充的分析技术以确立游客空间行为。研究现实意义本论文的现实意义在于, 强调了大数据的来源, 比如Flickr,证明了其对于有效代替传统数据的潜力, 以分析在游客在一个旅游目的地的空间行为和动线模式。特别是这种方法实现了实时自动可操作性等优势。研究原创性/价值本论文展示了一种方法, 这种方法通过聚类分析社交媒体上的上传图片以确立POIs, 以及通过关联规则挖掘分析和序列样式勘探分析来分析游客空间行为。本论文对于不同聚类分析以确立不同适用情况下的POIs的确立提出了独到见解。

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.