Abstract
Electromagnetic compatibility standards and guidelines used for planning of flicker allocation at various busbars of a power system requires some knowledge of the manner in which voltage fluctuations and hence the flicker propagate and how various loads respond to them. The current rudimentary approach taken for the determination of the load response to voltage fluctuations is based on network impedance values and hypothetical dynamic impedance values of the connected loads. Practical results and recently developed theory on the subsynchronous behavior of induction machines suggest that where there is a large base of induction machine exists on a power system the flicker attenuation is significant. This paper reports on a methodology to include the influence of induction machine behavior in flicker propagation and attenuation studies. The work is based on small-signal models to describe induction machine and system behavior which are utilized for the development of a flicker transfer coefficient. A systematic approach for the practical application of the methodology for flicker related work is included.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.