Abstract
Bacteria adhesion to fish mucus is a crucial virulence mechanism. As the initial step of bacterial infection, adhesion is impacted by bacterial motility and environmental conditions. However, its molecular mechanism is yet unclear. In this study, a significant decrease in gene expression of adhesion-deficient Vibrio harveyi was observed when the bacteria were subjected by Cu2+(50 mg/L), Pb2+(100 mg/L), Hg2+(25 mg/L), and Zn2+(50 mg/L). The genes fliA, fliR, and flrB were responsible for flagellation; being crucial for adhesion, these genes were identified and silenced via RNAi. After silencing of these genes by RNAi technology, the ability of adhesion, biofilm formation, motility, and flagella synthesis of V. harveyi were considerably reduced. Compared with the control group, it was observed that the expression levels of fliS, fliD, flgH, and flrC were significant down-regulated in fliR-RNAi, flrB-RNAi, and fliA-RNAi. This data indicates that the expression levels of most virulence genes are affected by fliA, fliR, and flrB. Also, the expression of fliA, fliR, and flrB can be influenced by the salinity, temperature, and pH. The results show that: (1) fliA, fliR, and flrB have important roles in the adhesion of V. harveyi; (2) fliA, fliR, and flrB can regulate bacterial adhesion by affecting its motility, and biofilm formation; (3) fliA, fliR, and flrB can regulate adhesion ability of V. harveyi in different environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.