Abstract

As a pathogen of cultured teleosts, Pseudomonas plecoglossicida has caused significant economic losses. flgC plays an important role in encoding flagellar basal-body rod proteins. Our previous studies revealed the high expression of P. plecoglossicida flgC in infected Epinephelus coioides. To explore the role of flgC in the virulence of P. plecoglossicida and the immune response of E. coioides to the infection of P. plecoglossicida, flgC gene of P. plecoglossicida was knocked down by RNA interference (RNAi). The results showed that the flgC gene in all four mutants of P. plecoglossicida was significantly knocked down, and the mutant with the best knockdown efficiency of 94.3% was selected for subsequent studies. Compared with the NZBD9 strain of P. plecoglossicida, the flgC-RNAi strain showed a significantly decrease in chemotaxis, motility, adhesion, and biofilm formation. Furthermore, compared with the E. coioides infected with the NZBD9 strain, the infection of flgC-RNAi strain resulted in the infected E. coioides a 1.5-day delay in the time of first death and an 80% increase in survival rate, far fewer white nodules upon the spleen surfaces, and lower pathogen load in the spleens. RNAi of flgC significantly influenced the metabolome and transcriptome of the spleen in infected E. coioides. KEGG enrichment analysis exhibited that the Toll-like receptor signaling pathway was the most enriched immune pathway; the most significantly enriched metabolic pathways were associated with Linoleic acid metabolism, Choline metabolism in cancer, and Glycerophospholipid metabolism. Further combined analysis of transcriptome and metabolome indicated significant correlations among pantothenate and CoA biosynthesis, beta-alanine metabolism, lysosome metabolites, and related genes. These results suggested that flgC was a pathogenic gene of P. plecoglossicida; flgC was associated with the regulation of chemotaxis, motility, biofilm formation, and adhesion; flgC influenced the immune response of E. coioides to the infection of P. plecoglossicida.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call