Abstract

The behavior of a tip-loaded cantilever beam with an arbitrary cross section is studied using Saint-Venant's semi-inverse method along with a power series solution for the out-of-plane flexure and torsion warping functions. The power series coefficients are determined by solving a set of variationally derived linear algebraic equations. For complex cross sections, the calculated coefficients represented a 'best-fit approximation' to the exact warping function. The resulting warping functions are used to determine the cross-sectional properties (torsion constant, shear correction factors, shear deformation coefficients, and shear center location). A new linear relation is developed for locating the shear center, where the twist rate is zero about the line of shear centers. Moreover, the kinematic relations for a new fully compatible one-dimensional beam theory are developed. Numerical results are presented first to verify the approach and second to provide section data on NACA four-series airfoils not currently found in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.