Abstract

A piezoelectric gripper with force sensor is presented for an optical precision manipulation. The gripper utilizes flexure hinge mechanisms with two-step amplification to achieve output displacement. Micro displacement amplification principle of the gripper is analyzed and verified using finite element analysis (FEA) soft. A force sensor of resistance strain type with elastic plate structure of bi-cantilever is designed, which is fixed at the bottom of the gripper to detect force signals during the working process. The strain foils adopt a connecting method of full-bridge. According to theoretical analysis and FEA of the force sensor, bonding positions of the strain foils are determined. Experimental results indicate that the sensor has good linearity and little temperature drift and creep, and its resolution is less than 100mN. Micro-vision method is used to test the gripper, and maximum displacement is 302μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.