Abstract

Simulations of flexural wave cloaking from multiple scattering events that are achieved by embedded cylinders in a thin plate are performed. Minimization of refraction is performed using small surrounding cylinders with varying thickness in radial and angular directions, respectively. The thickness variations render the effective wave speed lower in the radial direction and higher in the angular direction compared to the speed in the surrounding media, which results in the cloaking effect. In order to verify the feasibility of this approach, 15 layers of cylinders are placed around the blocked area. The multiple-scattering method is used to predict wave propagations and to take the interactions between cylinders into account. The effects of the thickness variation on the cloaking performance are analyzed. The results demonstrate that minimal scattering is achieved when the area of interest is surrounded by the thickness-varying cylinders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call