Abstract
The interaction of a plane harmonic longitudinal wave with a thin circular elastic inclusion is considered. The wave front is assumed to be parallel to the inclusion plane. Since the inclusion is thin, the matrix-inclusion interface conditions (perfect bonding) are formulated on the mid-plane of the inclusion. The bending displacements of the inclusion are determined from the bending equation for a thin plate. The problem is solved using discontinuous Lame solutions for harmonic vibrations. Therefore, the problem can be reduced to the Fredholm equation of the second kind for a function associated with the discontinuity of normal stresses on the inclusion. The equation obtained is solved by the method of mechanical quadratures using Gaussian quadrature formulas. Approximate formulas for the stress intensity factors are derived. Results from a numerical analysis of the dependence of the SIFs on the dimensionless wave number and the stiffness of the inclusion are presented
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.