Abstract

The concept of the fiber reinforced polymer (FRP)-concrete composite design was exploited in a new type of bridge superstructure. The proposed FRP-concrete composite bridge superstructure is intended to have durable, structurally sound, and cost effective composite system that will take full advantage of the inherent and complementary properties of FRP material and concrete. As a trial case, a prototype bridge superstructure was designed as a simply supported single-span one-lane bridge with a span length of 10 m. The bridge superstructure consists of two bridge decks and each bridge deck is comprised of four FRP box sections combined with a thin layer of concrete in the compression zone. A test specimen, fabricated as a one-third scale model of the prototype bridge superstructure, was subjected to four-points loading to simulate the two heaviest axles of the Chinese design truck load. The test results indicate that the proposed bridge model meets the stiffness requirement and has significant reserve strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.