Abstract

To test the impact of preheating (25, 37, 54, or 68 °C) of TetricEvoCeram (TEC), FiltekSupremeXT (FSXT), and Venus (V) on flexural strength (FS), shear bond strength (SBS) and interfacial tension (IFT). FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC). SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05). Preheated TEC (37–68 °C) showed higher FS compared to the control-group (25 °C) (p < 0.001). FSXT presented higher FS than TEC (p < 0.001). For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015). TEC showed higher values than V and FSXT (p < 0.001). IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001).

Highlights

  • Dental resin composites (RC) represent one of the most frequently used materials in dentistry in the field of tooth colored restorations in anterior and posterior dentition as well as adhesive cementation

  • This study investigated the mechanical and bonding properties of preheated RCs

  • Given by the temporary increased flowability, preheating of higher filled RCs can facilitate the clinical application [7,8] in both, direct composite layering and increment technique, as well as adhesive cementation of indirect restorations

Read more

Summary

Introduction

Dental resin composites (RC) represent one of the most frequently used materials in dentistry in the field of tooth colored restorations in anterior and posterior dentition as well as adhesive cementation. They have become an important part of modern minimum invasive treatment concepts. An even larger decrease could be observed with microhybrid RCs (minus 70%) [7,8,9] This fact enables the use of RCs with high organic filler content for the adhesive cementation of indirect manufactured inlays, onlays, or facial veneers. Beside several benefits in clinical application, this technique leads to important mechanical improvements: First of all to a higher fracture resistance of adhesive cementation [10] and secondly to the improvement of the Materials 2016, 9, 83; doi:10.3390/ma9020083 www.mdpi.com/journal/materials

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.