Abstract

The implementation of recycled concrete aggregates (RCAs) in the construction industry has been highlighted in the literature recently. This study aimed to propose an intelligent model for predicting the ultimate flexural strength of recycled reinforced concrete (RRC) beams. For this reason, a database comprising experimental tests on concrete beams was compiled from the literature. Additionally, two experimental tests were performed in the laboratory to enhance the aforementioned database. The flexural test results showed a 10% reduction in flexural strength when the RRC beam was tested instead of a conventional beam (constructed with natural aggregates). Nevertheless, an artificial neural network (ANN) improved by particle swarm optimization (PSO), as well as an imperialist competitive algorithm (ICA), were utilized for developing the predictive model. The inputs of the hybrid predictive models of flexural strength were the beam geometrical properties, reinforcement ratio, RCA percentage, compressive strength of concrete, and the yield strength of steel. The overall findings (e.g., correlation coefficient values of 0.997 and 0.994 for the testing data) showed the feasibility of the PSO-based ANN predictive model, as well as the ICA-based ANN predictive model in the flexural assessment of RRC beams. Furthermore, comparing the prediction performances of PSO-based ANN with ICA-based ANN and the conventional ANN showed that the PSO-based ANN model outperformed the predictive model built with the conventional ANN and the ICA-ANN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.