Abstract

The effect of stress state on the fracture behaviour of Gilsocarbon, an isotropic nuclear grade polygranular graphite, has been studied by employing four-point bend and ring-on-ring loading configurations to achieve uniaxial and equi-biaxial flexural stress states, respectively. Optical images of the specimens’ tensile surface were analysed by digital image correlation to measure the full-field displacements: these were used to identify the fracture initiation sites, analyse crack geometry (surface length and opening displacements) and also to calculate the J-integral strain energy release rate associated with surface crack propagation. Surface cracks that did not propagate to failure were identified and subsequently examined by X-ray computed tomography combined with digital volume correlation: measurements were made of their three-dimensional displacement fields when subjected to an opening tensile stress using a modified (flat) Brazilian Disk test geometry. The crack opening behaviour is explained by an effect of stress state on the development of the crack tip fracture process zone, which is in agreement with the effect of stress state on the measured strain energy release rates of sub-critical crack propagation. Both are attributed to the plastic constraint effect, which varies with the stress state in materials that can undergo inelastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.