Abstract

The reinforced concrete spans of a bridge subjected to extreme vehicular loads are investigated and retrofitted with carbon fiber reinforced polymer (CFRP) laminates. A finite element model of the bridge superstructure was created to determine the forces resulting from extreme loads. A moment–curvature analysis was subsequently carried out to investigate the flexural characteristics of the reinforced concrete sections prior to and after strengthening with CFRP laminates. The analytical modeling concluded that significant strength can be gained at the ultimate limit state, while relatively small increase in strength is observed at service load levels. The increase in flexural resistance at ultimate does provide an adequate margin of safety against further overloading. The analytical investigation and the retrofitting work are presented herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.