Abstract

This paper presents the bending behaviour of the porcupine quill and bioinspired Voronoi sandwich panels, aiming to explore the effect of geometrical design on the bending performance of the inspired structures. Through the x-ray micro-computed tomography, the internal morphology of the quill is explored. The longitudinal cross-section of the porcupine quill revealed a functionally graded design in the foam structure. Based on this observation, Voronoi sandwich panels are designed by incorporating the Voronoi seed distribution strategy and gradient transition design configurations. Porcupine-inspired sandwich panels with various core designs are fabricated via material jetting technique and tested under three-point bending condition. Results show that the sample failed at the bottom face panels for uniform sandwich panels, whereas graded samples failed in the core panel. The bending behaviour developed via simulation software shows a good agreement with the experimental results. The parametric study provides insights into structural designs for engineering applications, particularly in the aerospace and automobile industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.