Abstract

AbstractFlexural properties of moldings made by Reaction Injection Molding (RIM), which are structural foams consisting of high density skin and low density core, were investigated by three‐point bending tests. Two failure modes were observed in bending tests of the moldings made by RIM, and they are classified as follows according to the density ratio of skin layer to core layer: the opposite side of the skin layer to which load was subjected failed by tensile stress: and the same side of the skin layer to which load was subjected failed by compressive stress, causing wrinkling or buckling. Then the conventional composite beam theory was applied to the former failure mode and Hoff s buckling theory to the latter, and equations were derived to predict the flexural properties of the structural foams, which involved buckling from the flexural properties of solid construction. In addition, it has been shown that there exists a density distribution that maximizes the flexural strength of the moldings made by RIM with a given overall density. The results obtained here should be useful to the optimum structural design of moldings made by RIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.