Abstract
This work examines the performance of reinforced concrete (RC) beams strengthened using bonded steel wire rope (SWR) at various prestressing levels. The strengthening approach has, however, been applied to the flexural strengthening of RC T-beams in the negative moment region, in order to determine its advantages. For this purpose, four RC T-beams were fabricated and tested under monotonic four-point bending: one control beam (S00), one beam strengthened with non-prestressed SWR (S20), and two beams strengthened with SWR (prestressed at 10% and 20% of their ultimate tensile strength: S21 and S22). The results indicate that the strengthened beams exhibit higher load-carrying capacities. Specifically, the cracking load, yield load, and ultimate load of S20, S21, and S22 increase by 10%–30%, 30%–50%, and 50%–90%, respectively, compared to S00. Additionally, there is an improvement in stiffness and energy absorption capacity. However, these strategies may have a dual effect on the specimens, resulting in a reduction in their ductility index. Finally, the tested beams were replicated using a three-dimensional finite element model, which has proved effective in predicting the behavior of such structures and, therefore, was found to be appropriate for use in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.