Abstract

Abstract A numerical method for estimating the curvature, deflection and moment capacity of reinforced concrete beams strengthened with prestressed near-surface-mounted (NSM) FRP bars/strips is presented. A sectional analysis is carried out to predict the moment–curvature relationship from which beam deflections and moment capacity are then calculated. Based on the amount of FRP bars, different failure modes were identified, namely tensile rupture of prestressed FRP bars and concrete crushing before or after yielding of steel reinforcement. Comparisons between experimental results available in the literature and predicted curvature, moment capacity and deflection of reinforced concrete beams with prestressed NSM FRP reinforcements show good agreement. A parametric study concluded that higher prestressing levels improved the cracking and yielding loads, but decreased the beam ductility compared with beams strengthened with nonprestressed NSM FRP bars/strips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.