Abstract

The near-surface-mounted (NSM) fiber-reinforced polymer (FRP) technique is effective for enhancing the load carrying capacity of strengthened reinforced concrete (RC) beams. However, this technique significantly reduces the deformability of strengthened RC beams. To overcome this, the present study combines the NSM strengthening method with the partial bonding technique: the strengthening FRP reinforcement is partially bonded onto the concrete substrate). Six full-scale 4.3 m long RC beams strengthened with NSM FRPs using various bonding patterns were tested. The results indicated that mechanical interlocking grooves slightly improve the load carrying capacity, but have a negligible effect on the deformability of the strengthened beams. A decrease in the bond length increased deformability by 27.2 %, with only a 7.6 % drop in load capacity compared to that of the beam with full bonding. An advanced finite element model was developed and validated to confirm an optimal bond length of 930 mm for maximum flexural performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call