Abstract

Concrete made by post-filling coarse aggregate process could reduce the cement content greatly compared with traditional concrete placement method. Thus, it not only lowers the production cost of concrete through lower usage of cement but also reduces the CO2 emissions to the environment. In this paper, the compressive and tensile strength of post-filling coarse aggregate concrete with different post-filling ratios (PFRs) (0%, 10%, 15%, 20%, 25%, 30%) and concrete strength grades (C30, C40, C50) were first studied. Then the flexural performance of nineteen concrete beams with different concrete strength, post-filling ratios, reinforcement ratios was investigated. The experimental results showed that the compressive strength and elastic modulus of the post-filling coarse aggregate concrete increased with the increase of the post-filling ratio of coarse aggregate, reaching the peak value at the filling ratio of 20%. It indicated that there was no obvious difference in the failure mode as well as middle-span deflections between post-filling coarse aggregate concrete (PFCC) beams and ordinary concrete (OC) beams. Ductile failure was observed for all nineteen specimens. Results demonstrated that the cracking load, yield load, and ultimate load of the post-filling coarse aggregate concrete beams all reached the peak value at the post-filling ratio of 20%. In addition, the theoretical predictions of cracking loads and ultimate load carrying capacities matched the experimental results in satisfactory agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call