Abstract

Aluminum–wood–plastic composite (A-WPC) beams are a novel type of structural components formed by the co-extrusion of a wood–plastic composite (WPC) on the surface of a hot-rolled aluminum plate. In this study, composite beams of three different spans were designed to examine the flexural performance of A-WPC beams. For each group of specimens, the four-point flexural test was conducted to determine and analyze the failure mode, yield load, flexural bearing capacity, strength utilization, deformability, and strain distribution. The results show that when the span–height ratio is low, folding failure occurs on the compression side of the reinforced A-WPC composite beam, whereas when the span–height ratio is large, deformation and cracks occur on the tension side of the reinforced A-WPC beam first. Compared to the specimen with a span–height ratio of 18, the average ultimate load of the specimen with a span–height ratio of 12 was higher(66.75%), while the average deflection at failure was lower(38.03%). Compared to the specimen with a span–height ratio of 12, the average ultimate load of the specimen with a span–height ratio of 6 was higher(65.97%), while the average deflection at failure was lower(43.86%). The strength utilization of the reinforced A-WPC beam is 8.71%–9.26% higher than that of various engineered wood beams, and 3.46%–8.61% higher than that of various glulam beams. Based on these results, this paper proposed a method for calculating the flexural bearing capacity of the A-WPC beam. The calculation and test results indicate that the reinforced A-WPC beam exhibits excellent flexural performance and can be used as a model for composite beam design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call