Abstract

This paper investigates the performance of H-type end anchorage on the flexural strengthening of Fiber Reinforced Polymer (FRP) plated reinforced concrete (RC) beams. The H-type end anchorage (EA) consists of an anchorage section, a connection section and a deformation section. In the experimental study, the H-type EA was installed at the ends of FRP plate, and the FRP-plated RC beams were subjected to four-point bending load. The strengthening mechanism of H-type end anchorage mainly depends on the width of its deformation part, which further determines the overall axial stiffness of the end anchorage. The effect of H-type end anchorage on the flexural performance was evaluated in terms of critical loads, failure mode, deflection, ductility and strain behavior of various materials, all showing great improvement as compared to the FRP-plated RC beams without end anchorage. H-type end anchorage was found to be activated after certain thresholds of load was reached, and the elongation became excessive after its yielding. Finally, an analytical model was proposed and verified by the experimental results to estimate the ultimate load and failure mode of the EA-strengthened RC beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call