Abstract

Continuous reinforced concrete (RC) beams are popular structural components. However, RC structures in corrosive environments can be degraded due to steel reinforcement corrosion. In this study, a dual-functional intervention method, i.e., impressed current cathodic protection and structural strengthening (ICCP-SS), is adopted to repair degraded beams. The carbon fabric-reinforced cementitious matrix (C-FRCM) composite serves dual functions in the intervention method. The effects of reinforcement corrosion, cathodic protection and the C-FRCM strengthening system on the behaviors of continuous beams should be investigated. This study provides experimental data on continuous RC beams rehabilitated by ICCP-SS in corrosive environments and investigates the structural responses, moment redistributions and design rules of these beams. The electrochemical monitoring results showed that steel reinforcements in continuous beams under corrosive environments are successfully protected. Five-point bending test results showed that beams strengthened with C-FRCM composites have higher yielding loads and ultimate loads than corroded beams without protection. Comparison of the predicted and measured moment capacities at the central support and midspan showed that the design methods generally underestimate the moment capacities of unstrengthened sections and overestimate those of strengthened sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.