Abstract

The demand for timber resources in the building industry has been increasing. Plantation Eucalyptus nitens is of interest because of its sustainable supply and potential for structural applications. However, few design standards cover strength values of plantation eucalypt timber, especially flexural failure below and above the fibre saturation point, which is an important mechanism of failure in bending members used in the building industry. Static bending tests were undertaken using a universal testing machine to examine nonlinear bending behaviour of 130 fibre managed E. nitens small clear wood samples at low and high moisture contents (MC). The mean bending modulus of rupture (MOR) was 80.7 MPa for low MC and 59.0 MPa for high MC. The high MC samples exhibited larger displacements at low ultimate loads, while the low MC samples showed abrupt failures at relatively small displacements with high ultimate loads. The design characteristic values for low and high MC E. nitens were 68.5 MPa and 39.8 MPa, respectively. This research demonstrates that fibre managed E. nitens timber is a promising timber for structural applications, especially when exposed to water, as the MOR reduction of E. nitens timber above FSP is relatively lower than those of P. radiata, which is a traditional construction material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.