Abstract
Engineered cementitious composites (ECCs) have ultrahigh ductility and multiple-cracking properties. High-strength stainless steel wire rope (HSSSWR) has high tensile strength and good corrosion resistance. Taking advantage of these two materials, ECCs reinforced with HSSSWR (HSSSWR-ECCs) promise to be attractive when used in flexible and ductile link slabs in bridge deck systems, in permanent formworks of concrete members and for strengthening existing members. In this work, bending tests were performed on HSSSWR-ECC slabs with different HSSSWR reinforcement ratios and ECC formulations. The results showed that the HSSSWR-ECC slabs exhibited excellent crack-width control and deformation capacities under bending moments. An increase in the HSSSWR reinforcement ratio enhanced the flexural capacity of the HSSSWR-ECC slabs, but reduced their ductility. Adding a thickener to the ECC enhanced the crack-width control ability and ductility of the HSSSWR-ECC slabs by improving the dispersion of polyvinyl alcohol fibres in the ECC, but reduced the flexural capacity by reducing the strength of the ECC. Formulas for predicting the flexural capacity of HSSSWR-ECC slabs were developed based on related mechanics theories. The accuracy of the proposed formulas was verified by comparing the test results and predicted results using a finite-element model for HSSSWR-ECC slabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Structures and Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.