Abstract

Recently, there has been an ongoing interest in the use of fly ash as an alternative to reduce cement content in cementitious composites. The addition of high-volume fly ash (HVFA) into strain hardening cementitious composites (SHCCs) as a strengthening layer for concrete not only improves the flexural performance, but also provides a sustainable approach to address a severe environmental concern. In this contribution, an experimental program was undertaken to determine the influence of SHCCs containing high-volume fly ash (HVFA-SHCC) working as a strengthening layer in a plain concrete beam on the flexural behavior of the layered structure, considering the layer thickness, re-curing conditions and curing time. The crack patterns, mid-span strain distributions, and load deflection curves were obtained based on a four-point bending test. Compared to that for the plain concrete, the specimens containing the HVFA-SHCC layer exhibited excellent crack control, and their failure mode gradually changed from flexure failure to shear failure with increased layer thickness. Moreover, a remarkable improvement in the strain hardening behavior was also found as increasing the layer thickness. Furthermore, an ultimate flexural toughness ratio was proposed, which has proven to be a valuable method to evaluate the flexural toughness of plain concrete beams containing HVFA-SHCC layers under different deformation conditions. The present study suggests that the optimal layer thickness of HVFA-SHCC is in the range of 25%-35% of the beam height in view of the flexural performance and cost. In addition, an improved flexural performance of a plain concrete beam containing an HVFA-SHCC layer is expected in an alkali environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.