Abstract

Pioneering studies have been conducted on alternative cementitious material in the manufacturing of conventional concrete to reduce carbon emission and improve the overall efficacy. However, there are limited studies on eco-friendly materials with low calcium fly ash. This study aims to examine the strength fly ash geopolymer concrete and reduce carbon emission. In this investigation, flexural test is done for conventional and geopolymer concrete (GPC) beam samples after the fulfillment of rest period and 24 h steam curing at 60 °C. The experimental results prove that the initial characteristics of both specimens are almost similar. When GPC specimens reached the service, yield, and failure stages, the load carrying capacity, deflection increased up to 21.5 and 8.75%, respectively and better load bearing capacity, moment resistance, and crack propagation were observed more than in conventional cement. Fresh property test results indicated the achievement of standard workability without the addition of any admixture. Our study show that low calcium based geopolymer can be used as an efficient material for the alternate of cement in cement-based industries with eco-friendly nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call