Abstract
Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied. Results show that the in-plane bending glass plates with both ends simply supported and their upper edge free lose overall stability under loads, which belongs to the limit-point type of instability. It is found that the buckling load increases linearly with the increase of height-to-span ratio of the glass plates. The lateral stress of in-plane bending glass plates without lateral supports increases linearly under loads; while the large-area stress increases nonlinearly and the lateral stress is not the controlling factor of instability. In finite element analysis, the first buckling mode is regarded as the initial imperfection and imposed on the model as 1/1000 of the span of the components. The numerical buckling load according to the theory of large deflection is less than the experiment result, which is more conservative and can provide some reference for design. For the design method, when the in-plane load is imposed on the glass plate, its lateral strength and the deflection should be verified. Considering the stability of the in-plane bending glass plate without reliable lateral support, buckling is another possible failure mode and calls for verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.