Abstract
Many prestressed concrete bridges are in need of upgrading in order to increase their posted capacities. Departments of transportation across the country have been faced with large financial burdens on the maintenance budget, negative psychological effects on highway users, long traffic delays during maintenance, potential safety hazards, and reduced service life as a result of the deficiencies. In response to considerable consultation with the North Carolina Department of Transportation (NCDOT), a research project with practical goals was initiated to evaluate the cost-effectiveness and value engineering of Carbon Fiber Reinforced Polymer (CFRP) repair and strengthening systems for prestressed concrete bridge girders. This paper presents the first phase of the research program, involving the testing under static loading conditions of eight prestressed concrete bridge girders, six strengthened with various CFRP systems. Results show that the ultimate capacity of prestressed concrete bridge girders can be increased by as much as 73% using CFRP without sacrificing the ductility of the original member. Transverse CFRP U-wrap reinforcements are recommended along the length of the girder to control debonding type failures. The second phase of the research will examine the fatigue behavior of the strengthened girders, and provide analysis under service loading conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.