Abstract

The use of composite construction has been incorporated into the design of steel components for decades, creating efficient and stiffer structures through the combined benefits of structural steel and reinforced concrete. Traditional floor systems develop composite action between vertically aligned elements using shear studs or other mechanical transfer elements. In this paper, the behavior of a composite structural system that combines steel beams, precast hollow core slabs, steel reinforcement, and cementitious grout in a unique geometry to create a shallow, monolithic, and composite floor assembly for use in residential and commercial construction is evaluated. Composite action is developed through a linear strain distribution between horizontally aligned concrete slab and steel beam elements. Experimental results from large-scale assembly testing of the composite system, known as the Girder-Slab System, are presented. The sensitivity of the system to material properties and structural geometry is investigated including effective width, section properties, and flexural strength. Comparisons of flexural section properties and strength are made between experimental performance and predictions using mechanics- and code-based principles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.