Abstract

AbstractExperimental and numerical investigations were conducted to evaluate the performance of a newly developed bridge system. Through the investigation, a decked bulb T-beam bridge model was constructed, instrumented, and tested under service and ultimate loads. The bridge model had a width of 2.59 m (8.5 ft), an effective span of 9.45 m (31 ft), a depth of 356 mm (14 in.), and was composed of five adjacent decked bulb T-beams. The T-beams were interconnected at their top flanges using 76-mm (3-in.)-wide ultra-high-performance concrete (UHPC) shear key joints and five full-depth equally spaced transverse diaphragms along the span. Each diaphragm was posttensioned with two nonbonded transverse carbon fiber composite cable (CFCC) strands. The investigation revealed that the developed decked bulb T-beam bridge system maintained its structural integrity under service loads with signs of distress in neither the shear key joints nor top flanges. UHPC shear keys with the transverse diaphragms were adequate to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.