Abstract

The flexural and impact response of completely biodegradable natural composites, specifically bamboo and pineapple leaf fiber (PALF) reinforced composites, is investigated using a combination of experimental and simulation techniques. The flexural strength and bending modulus are determined through 3-point bending tests while varying the weight fraction of the selected natural fibers from 5 to 15%. The impact of alkaline treatment at different percentages of 2 to 10% on the same properties such as flexural strength and bending modulus is also investigated. Subsequently, simulation techniques are employed to determine the behavior of the natural composite materials under bending loads. Finite element models are utilized to analyze the normal, and shear stresses in the composite structures. The research findings unveiled that incorporating a 10% weight fraction of bamboo fiber along with an 8% NaOH treatment led to the most significant enhancement in flexural strength, showcasing a notable advancement of 111.02%. Within the PALF fiber reinforced composite, employing 2% NaOH treated PALF fiber at a 15% weight fraction yielded an impressive improvement of 125.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.